SQL Notes - Incomplete

November 23, 2024

ACID Properties

  • Atomicity -> A transaction should either be successful or fail.
  • Consistency -> Data should be consistent ac
  • Isolation
  • Durability

DDL (Data Definition)(Auto-Commit)

  • create
  • drop
  • alter
  • truncate

DML (Data Manipulation)

  • insert
  • update
  • delete

DRL (Data Retrieval)

  • select

show databases; -> Show all databases

use database; -> Use given database

desc table; -> Show table structure

show tables; -> Show all tables in current database

Create Table

Creates a new table.

  • create table <table_name> (column datatype, column datatyoe(length/size));
  • Eg. create table student (roll int, name varchar(50));
  • Eg. create table emp (eid int, ename varchar(50), city varchar(40), doj date);

insert

Values should match the columns.

  • insert into <table_name> values(value, value);
  • Eg. insert into student values(1, "Niranjan");
  • Eg. insert into emp values(1, "Peter", "Pune", "2020-01-01"); //(YYYY-MM-DD);
  • Eg. insert into emp (col1, col2, col3) values (val1, val2, val3);
  • Eg. insert into emp (roll, name, city, doj) values(1, "Peter", "Pune", "2020-01-01"); //(YYYY-MM-DD);

update

Update existing records

  • Single Column -> update <table_name> set <col_name>=<new_value> where <condition_>;
  • Multiple Columns -> update <table_name> set <col_name>=<new_value>, <col_name>=<new_value> where <condition_>;
  • Eg. update student set roll = 4 where name='Niranjan';

delete

Delete exiting records.

  • delete from <table_name> where <condition>;
  • Eg. delete from student where roll=1;
  • delete from <table_name>; -> Deletes all records from given table.

truncate

Maintain table structure and Delete all data.

  • truncate table <table_name>;
  • Eg. truncate table emp;

drop

Delete the whole table.

  • drop table <table_name>;
  • Eg. drop table emp;

alter

alter is used for,

  • Adding new columns -> alter table <table_name> add column <column_name> <data_type>
    • Eg. alter table subscriber add column samount long;
  • Removing existing columns -> alter table <table_name> drop column <column_name>;
    • Eg. alter table subscriber drop column extrac;
  • Rename tables -> alter table <old_table_name> rename to <new_table_name>;
    • Eg. alter table subscriber rename to subs;
  • Change data type ->
    • Change Column Name & Datatype ->alter table <table_name> change column <old_column> <new_col_name> <new_data_type>;
      • Eg. alter table subscriber change column samount amount double;
    • Change Column Name -> alter table <table_name> change column <old_column> <new_col_name> <old_data_type>;
      • Eg. alter table subscriber change column cid sid int;
    • Change Data type -> alter table <table_name> change column <old_column> <old_column> <new_datatype>;
      • Eg. alter table subscriber change column sid sid varchar(100);

Constraints

  • Not Null -> Does not all null values.
    • create table student (roll int NOT NULL, name varchar(100));
  • Unique -> Does not allow duplicate values.
    • create table student (roll int UNIQUE, name varchar(100));
  • Primary Key -> Does not allow null and duplicate values.
    • Single Column ->create table student (roll int PRIMARY KEY, name varchar(100));
    • Multiple Column -> `create table student (roll int, name varchar(100), PRIMARY KEY(roll, name));

27 Oct

between .. and

  • sql select * from emp where eid between 0 and 10; - Range

like

  • select * from emp where ename like 'A%'; - Starts with A
  • select * from emp where ename like '%A; - Ends with A
  • select * from emp where ename like '%A%'; - Anything that contains A
  • select * from emp where ename like '_____'; - '_' - wildcard

order by

  • select * from emp order by ename asc; - List records in Ascending Order
  • select * from emp order by ename desc; - List records in Descending Order
  • select * from emp order by ename desc, city asc; - List desc by ename first then by city

limit

  • select * from emp limit 8; - List the top 8 records
  • select * from emp limit 8,2; - List the 2 records after the top 8 records

case

  • select ename, case when city='Pune' then 1000 when city='Mumbai' then 1500 when city='Delhi' then 2000 else 500 end bonus from emp;

Joins

Inner Join -> Matching in both

select * from emp, dept.dname from emp join dept on emp.did=dept.did; 
+------+--------+------------+------------+-------+------+-------+
| eid  | ename  | city       | doj        | sal   | did  | dname |
+------+--------+------------+------------+-------+------+-------+
|    8 | Gaurav | Ahmednagar | 2000-01-01 | 35000 |   10 | IT    |
|    9 | Pooja  | Pune       | 1998-01-01 | 65000 |   20 | RD    |
|   10 | Komal  | Bengaluru  | 1998-01-01 | 65000 |   10 | IT    |
|   11 | Xin    | China      | 1998-01-01 | 65000 |   10 | IT    |
+------+--------+------------+------------+-------+------+-------+
4 rows in set (0.001 sec)

Left Join -> Matching from Left

select emp.*, dname from emp left join dept on emp.did = dept.did;
+------+----------+------------+------------+-------+------+-------+
| eid  | ename    | city       | doj        | sal   | did  | dname |
+------+----------+------------+------------+-------+------+-------+
|    8 | Gaurav   | Ahmednagar | 2000-01-01 | 35000 |   10 | IT    |
|   10 | Komal    | Bengaluru  | 1998-01-01 | 65000 |   10 | IT    |
|   11 | Xin      | China      | 1998-01-01 | 65000 |   10 | IT    |
|    9 | Pooja    | Pune       | 1998-01-01 | 65000 |   20 | RD    |
|    1 | Vivek    | Pune       | 1999-01-01 | 20000 | NULL | NULL  |
|    2 | Abhishek | Mumbai     | 2000-01-01 | 30000 | NULL | NULL  |
|    3 | Shivam   | Delhi      | 1996-05-05 | 40000 | NULL | NULL  |
|    4 | Neha     | Kashmir    | 1999-05-01 | 50000 | NULL | NULL  |
|    5 | Akshay   | Nagpur     | 1994-06-03 | 80000 | NULL | NULL  |
|    6 | Omkar    | Savedi     | 2000-07-03 | 20000 | NULL | NULL  |
|    7 | Kavita   | Shirdi     | 1999-01-01 | 35000 | NULL | NULL  |
+------+----------+------------+------------+-------+------+-------+

Right Join -> Matching from right

select emp.*, dname from emp right join dept on emp.did = dept.did;
+------+--------+------------+------------+-------+------+-------+
| eid  | ename  | city       | doj        | sal   | did  | dname |
+------+--------+------------+------------+-------+------+-------+
|    8 | Gaurav | Ahmednagar | 2000-01-01 | 35000 |   10 | IT    |
|    9 | Pooja  | Pune       | 1998-01-01 | 65000 |   20 | RD    |
|   10 | Komal  | Bengaluru  | 1998-01-01 | 65000 |   10 | IT    |
|   11 | Xin    | China      | 1998-01-01 | 65000 |   10 | IT    |
| NULL | NULL   | NULL       | NULL       |  NULL | NULL | DM    |
+------+--------+------------+------------+-------+------+-------+

Full Outer Join -> All records

Nov 9

Cross Join

Match every row from both tables.

MariaDB [b16]> select eid, ename, dname from emp cross join dept;
+------+----------+-------+
| eid  | ename    | dname |
+------+----------+-------+
|    1 | Vivek    | IT    |
|    1 | Vivek    | RD    |
|    1 | Vivek    | DM    |
|    2 | Abhishek | IT    |
|    2 | Abhishek | RD    |
|    2 | Abhishek | DM    |
|    3 | Shivam   | IT    |
|    3 | Shivam   | RD    |
|    3 | Shivam   | DM    |
|    4 | Neha     | IT    |
|    4 | Neha     | RD    |
|    4 | Neha     | DM    |
|    5 | Akshay   | IT    |
|    5 | Akshay   | RD    |
|    5 | Akshay   | DM    |
|    6 | Omkar    | IT    |
|    6 | Omkar    | RD    |
|    6 | Omkar    | DM    |
|    7 | Kavita   | IT    |
|    7 | Kavita   | RD    |
|    7 | Kavita   | DM    |
|    8 | Gaurav   | IT    |
|    8 | Gaurav   | RD    |
|    8 | Gaurav   | DM    |
|    9 | Pooja    | IT    |
|    9 | Pooja    | RD    |
|    9 | Pooja    | DM    |
|   10 | Komal    | IT    |
|   10 | Komal    | RD    |
|   10 | Komal    | DM    |
|   11 | Xin      | IT    |
|   11 | Xin      | RD    |
|   11 | Xin      | DM    |
+------+----------+-------+
33 rows in set (0.006 sec)

Self Join

Join with itself

MariaDB [b16]> select * from emps;
+------+---------+-------+
| eid  | ename   | mgrid |
+------+---------+-------+
|    1 | Alice   |  NULL |
|    2 | Bob     |     1 |
|    3 | Charlie |     1 |
|    4 | Diana   |     2 |
|    5 | Eve     |     2 |
|    6 | Frank   |     3 |
|    7 | Grace   |     3 |
|    8 | Hank    |     4 |
|    9 | Ivy     |     4 |
|   10 | Jack    |     5 |
+------+---------+-------+
10 rows in set (0.001 sec)

Output ->


MariaDB [b16]> select e.eid, e.ename , m.ename as Manager from emps e left join emps m on e.mgrid = m.eid;
+------+---------+---------+
| eid  | ename   | Manager |
+------+---------+---------+
|    2 | Bob     | Alice   |
|    3 | Charlie | Alice   |
|    4 | Diana   | Bob     |
|    5 | Eve     | Bob     |
|    6 | Frank   | Charlie |
|    7 | Grace   | Charlie |
|    8 | Hank    | Diana   |
|    9 | Ivy     | Diana   |
|   10 | Jack    | Eve     |
|    1 | Alice   | NULL    |
+------+---------+---------+
10 rows in set (0.001 sec)

Functions

  • Scaler -> Returns same number of records, n records -> n output
  • Group -> Returns a single output, n records -> 1 output

Scaler Functions

upper -> Convert to Upper case

MariaDB [b16]> select ename, upper(ename) from emp;
+----------+--------------+
| ename    | upper(ename) |
+----------+--------------+
| Vivek    | VIVEK        |
| Abhishek | ABHISHEK     |
| Shivam   | SHIVAM       |
| Neha     | NEHA         |
| Akshay   | AKSHAY       |
| Omkar    | OMKAR        |
| Kavita   | KAVITA       |
| Gaurav   | GAURAV       |
| Pooja    | POOJA        |
| Komal    | KOMAL        |
| Xin      | XIN          |
+----------+--------------+

MariaDB [b16]> select upper('abcd');
+---------------+
| upper('abcd') |
+---------------+
| ABCD          |
+---------------+

MariaDB [b16]> select * from emp where upper(city) = 'Pune';
+------+-------+------+------------+-------+------+
| eid  | ename | city | doj        | sal   | did  |
+------+-------+------+------------+-------+------+
|    1 | Vivek | Pune | 1999-01-01 | 20000 | NULL |
|    9 | Pooja | Pune | 1998-01-01 | 65000 |   20 |
+------+-------+------+------------+-------+------+

lower -> Convert to Lower Case

MariaDB [b16]> select ename, lower(ename) from emp;
+----------+--------------+
| ename    | lower(ename) |
+----------+--------------+
| Vivek    | vivek        |
| Abhishek | abhishek     |
| Shivam   | shivam       |
| Neha     | neha         |
| Akshay   | akshay       |
| Omkar    | omkar        |
| Kavita   | kavita       |
| Gaurav   | gaurav       |
| Pooja    | pooja        |
| Komal    | komal        |
| Xin      | xin          |
+----------+--------------+

MariaDB [b16]> select lower('ABCD');
+---------------+
| lower('ABCD') |
+---------------+
| abcd          |
+---------------+

length -> Counts characters in a string

MariaDB [b16]> select length('  Hello World ');
+--------------------------+
| length('  Hello World ') |
+--------------------------+
|                       14 |
+--------------------------+

trim -> Remove space from left and right side of the string

MariaDB [b16]> select length(trim('  Hello World '));
+--------------------------------+
| length(trim('  Hello World ')) |
+--------------------------------+
|                             11 |
+--------------------------------+

ltrim -> Remove space from left side of the string

MariaDB [b16]> select length(ltrim('  Hello World '));
+---------------------------------+
| length(ltrim('  Hello World ')) |
+---------------------------------+
|                              12 |
+---------------------------------+
1 row in set (0.001 sec)

rtrim -> Remove space from right side of the string

MariaDB [b16]> select length(rtrim('  Hello World '));
+---------------------------------+
| length(rtrim('  Hello World ')) |
+---------------------------------+
|                              13 |
+---------------------------------+

repeat -> Repeats the selected records n times

MariaDB [b16]> select repeat(ename,2) from emp;
+------------------+
| repeat(ename,2)  |
+------------------+
| VivekVivek       |
| AbhishekAbhishek |
| ShivamShivam     |
| NehaNeha         |
| AkshayAkshay     |
| OmkarOmkar       |
| KavitaKavita     |
| GauravGaurav     |
| PoojaPooja       |
| KomalKomal       |
| XinXin           |
+------------------+

reverse -> Reverses the selected column

MariaDB [b16]> select ename, reverse(ename) from emp;
+----------+----------------+
| ename    | reverse(ename) |
+----------+----------------+
| Vivek    | keviV          |
| Abhishek | kehsihbA       |
| Shivam   | mavihS         |
| Neha     | aheN           |
| Akshay   | yahskA         |
| Omkar    | rakmO          |
| Kavita   | ativaK         |
| Gaurav   | varuaG         |
| Pooja    | ajooP          |
| Komal    | lamoK          |
| Xin      | niX            |
+----------+----------------+

concat -> Concatenates columns

If one the value is null returns null

MariaDB [b16]> select ename, city, concat(ename,'-',city) from emp;
+----------+------------+------------------------+
| ename    | city       | concat(ename,'-',city) |
+----------+------------+------------------------+
| Vivek    | Pune       | Vivek-Pune             |
| Abhishek | Mumbai     | Abhishek-Mumbai        |
| Shivam   | Delhi      | Shivam-Delhi           |
| Neha     | Kashmir    | Neha-Kashmir           |
| Akshay   | Nagpur     | Akshay-Nagpur          |
| Omkar    | Savedi     | Omkar-Savedi           |
| Kavita   | Shirdi     | Kavita-Shirdi          |
| Gaurav   | Ahmednagar | Gaurav-Ahmednagar      |
| Pooja    | Pune       | Pooja-Pune             |
| Komal    | Bengaluru  | Komal-Bengaluru        |
| Xin      | China      | Xin-China              |
+----------+------------+------------------------+

replace -> replace char/string with given char/string

MariaDB [b16]> select ename, replace(ename, 'a','x') from emp;
+----------+-------------------------+
| ename    | replace(ename, 'a','x') |
+----------+-------------------------+
| Vivek    | Vivek                   |
| Abhishek | Abhishek                |
| Shivam   | Shivxm                  |
| Neha     | Nehx                    |
| Akshay   | Akshxy                  |
| Omkar    | Omkxr                   |
| Kavita   | Kxvitx                  |
| Gaurav   | Gxurxv                  |
| Pooja    | Poojx                   |
| Komal    | Komxl                   |
| Xin      | Xin                     |
+----------+-------------------------+

MariaDB [b16]> select ename, replace(ename, 'ek','x') from emp;
+----------+--------------------------+
| ename    | replace(ename, 'ek','x') |
+----------+--------------------------+
| Vivek    | Vivx                     |
| Abhishek | Abhishx                  |
| Shivam   | Shivam                   |
| Neha     | Neha                     |
| Akshay   | Akshay                   |
| Omkar    | Omkar                    |
| Kavita   | Kavita                   |
| Gaurav   | Gaurav                   |
| Pooja    | Pooja                    |
| Komal    | Komal                    |
| Xin      | Xin                      |
+----------+--------------------------+

substr -> output the n char after given index (col, index, n )

MariaDB [b16]> select city, substr(city, 1,3) from emp;
+------------+-------------------+
| city       | substr(city, 1,3) |
+------------+-------------------+
| Pune       | Pun               |
| Mumbai     | Mum               |
| Delhi      | Del               |
| Kashmir    | Kas               |
| Nagpur     | Nag               |
| Savedi     | Sav               |
| Shirdi     | Shi               |
| Ahmednagar | Ahm               |
| Pune       | Pun               |
| Bengaluru  | Ben               |
| China      | Chi               |
+------------+-------------------+

substring_index -> split using given pattern

MariaDB [b16]> select email, substring_index(email, '@',1) from emp;
+--------------------+-------------------------------+
| email              | substring_index(email, '@',1) |
+--------------------+-------------------------------+
| vivek@gmail.com    | vivek                         |
| abhishek@gmail.com | abhishek                      |
| shivam@gmail.com   | shivam                        |
| neha@gmail.com     | neha                          |
| akshay@gmail.com   | akshay                        |
| omkar@gmail.com    | omkar                         |
| kavita@gmail.com   | kavita                        |
| gaurav@gmail.com   | gaurav                        |
| pooja@gmail.com    | pooja                         |
| komal@gmail.com    | komal                         |
| xin@gmail.com      | xin                           |
+--------------------+-------------------------------+

10 Nov

round -> Rounds up to nearest integer

MariaDB [b16]> select round(190.12323);
+------------------+
| round(190.12323) |
+------------------+
|              190 |
+------------------+
1 row in set (0.001 sec)

MariaDB [b16]> select round(190.92323);
+------------------+
| round(190.92323) |
+------------------+
|              191 |
+------------------+
1 row in set (0.001 sec)

format -> Rounds up and make the value precise

MariaDB [b16]> select format(190.1232, 2);
+---------------------+
| format(190.1232, 2) |
+---------------------+
| 190.12              |
+---------------------+
1 row in set (0.001 sec)

MariaDB [b16]> select format(190.9232, 2);
+---------------------+
| format(190.9232, 2) |
+---------------------+
| 190.92              |
+---------------------+
1 row in set (0.001 sec)

MariaDB [b16]> select format(190.9232, 3);
+---------------------+
| format(190.9232, 3) |
+---------------------+
| 190.923             |
+---------------------+
1 row in set (0.001 sec)

MariaDB [b16]> select format(190.9632, 1);
+---------------------+
| format(190.9632, 1) |
+---------------------+
| 191.0               |
+---------------------+
1 row in set (0.001 sec)

coalesce -> Returns the first non-NULL value in a list of arguments

MariaDB [b16]> select *, coalesce(ccity,pcity,'Not Present') as City from cust;
+------+-------+--------+-------------+
| id   | ccity | pcity  | City        |
+------+-------+--------+-------------+
|    1 | Pune  | Mumbai | Pune        |
|    2 | Delhi | NULL   | Delhi       |
|    3 | NULL  | Surat  | Surat       |
|    4 | NULL  | NULL   | Not Present |
+------+-------+--------+-------------+

now-> Current date & time

MariaDB [b16]> select now();
+---------------------+
| now()               |
+---------------------+
| 2024-11-10 09:14:33 |
+---------------------+
1 row in set (0.001 sec)

current_date -> Returns Current Date

MariaDB [b16]> select current_date();
+----------------+
| current_date() |
+----------------+
| 2024-11-10     |
+----------------+
1 row in set (0.001 sec)

current_time -> Return Current Time

MariaDB [b16]> select current_time();
+----------------+
| current_time() |
+----------------+
| 09:21:13       |
+----------------+

year, month, monthname, day, dayname, hour, minute, second

MariaDB [b16]> select year(now());
+-------------+
| year(now()) |
+-------------+
|        2024 |
+-------------+
1 row in set (0.001 sec)

MariaDB [b16]> select month(now());
+--------------+
| month(now()) |
+--------------+
|           11 |
+--------------+
1 row in set (0.001 sec)

MariaDB [b16]> select monthname(now());
+------------------+
| monthname(now()) |
+------------------+
| November         |
+------------------+


MariaDB [b16]> select day(now());
+------------+
| day(now()) |
+------------+
|         10 |
+------------+
1 row in set (0.001 sec)

MariaDB [b16]> select dayname(now());
+----------------+
| dayname(now()) |
+----------------+
| Sunday         |
+----------------+
1 row in set (0.001 sec)

MariaDB [b16]> select hour(now());
+-------------+
| hour(now()) |
+-------------+
|           9 |
+-------------+
1 row in set (0.001 sec)

MariaDB [b16]> select minute(now());
+---------------+
| minute(now()) |
+---------------+
|            31 |
+---------------+
1 row in set (0.000 sec)

MariaDB [b16]> select second(now());
+---------------+
| second(now()) |
+---------------+
|            19 |
+---------------+
1 row in set (0.001 sec)

dateformat(col, format) -> Change format of given col

select date_format(now(), '%Y');

| Specifier | Description | Example Output | | ------------ | -------------------------------------------------------------------- | ------------------- | | %Y | Year as a four-digit number | 2023 | | %y | Year as a two-digit number | 23 | | %m | Month as a numeric (01-12) | 04 | | %M | Month as a full name | April | | %b | Month as a short name | Apr | | %d | Day of the month (01-31) | 05 | | %H | Hour (00-23) | 14 | | %h or %I | Hour (01-12) | 02 | | %i | Minutes (00-59) | 30 | | %s | Seconds (00-59) | 45 | | %p | AM or PM | PM | | %W | Weekday name (full) | Wednesday | | %w | Day of the week (0=Sunday, 6=Saturday) | 3 (for Wednesday) | | %j | Day of the year (001-366) | 095 | | %U | Week number of the year (00-53, Sunday as the first day of the week) | 14 | | %V | Week number of the year (01-53, Monday as the first day of the week) | 14 | | %X | Year for the week (same as %Y if the week belongs to that year) | 2023 |

date_add(col, interval n day/month/year) -> Add n days/month/year to the given date

MariaDB [b16]> select date_add(now(), interval 2 day);
+---------------------------------+
| date_add(now(), interval 2 day) |
+---------------------------------+
| 2024-11-12 09:58:19             |
+---------------------------------+
1 row in set (0.001 sec)

MariaDB [b16]> select date_add(now(), interval 2 month);
+-----------------------------------+
| date_add(now(), interval 2 month) |
+-----------------------------------+
| 2025-01-10 09:58:22               |
+-----------------------------------+
1 row in set (0.001 sec)

MariaDB [b16]> select date_add(now(), interval 2 year);
+----------------------------------+
| date_add(now(), interval 2 year) |
+----------------------------------+
| 2026-11-10 09:58:25              |
+----------------------------------+
1 row in set (0.001 sec)

MariaDB [b16]> select date_format(date_add(now(), interval 1 month), '%Y/%M/%D');
+------------------------------------------------------------+
| date_format(date_add(now(), interval 1 month), '%Y/%M/%D') |
+------------------------------------------------------------+
| 2024/December/10th                                         |
+------------------------------------------------------------+
1 row in set (0.001 sec)

sub_date(col, interval n) -> Reduces the given interval

MariaDB [b16]> select date_format(now(), '%Y/%M/%D') as Current, date_format(date_sub(now(), interval 2 day), '%Y/%M/%D') as 'sub_date()';
+--------------------+-------------------+
| Current            | sub_date()        |
+--------------------+-------------------+
| 2024/November/10th | 2024/November/8th |
+--------------------+-------------------+
1 row in set (0.001 sec)

datediff(current_date, col) -> Returns remaining days from the given date

MariaDB [b16]> select sub_date, current_date(), datediff(now(), sub_date) as Expiry from subscriber;
+---------------------+----------------+--------+
| sub_date            | current_date() | Expiry |
+---------------------+----------------+--------+
| 2023-11-10 09:15:00 | 2024-11-10     |    366 |
| 2023-12-05 14:45:00 | 2024-11-10     |    341 |
| 2023-01-10 08:00:00 | 2024-11-10     |    670 |
| 2023-02-15 12:30:00 | 2024-11-10     |    634 |
| 2023-03-20 15:00:00 | 2024-11-10     |    601 |
| 2023-01-15 10:00:00 | 2024-11-10     |    665 |
| 2023-02-20 11:30:00 | 2024-11-10     |    629 |
| 2023-03-10 09:15:00 | 2024-11-10     |    611 |
| 2023-04-05 14:45:00 | 2024-11-10     |    585 |
| 2023-05-15 08:00:00 | 2024-11-10     |    545 |
| 2023-06-20 12:30:00 | 2024-11-10     |    509 |
| 2023-07-10 15:00:00 | 2024-11-10     |    489 |
| 2023-08-05 16:30:00 | 2024-11-10     |    463 |
| 2023-09-15 10:00:00 | 2024-11-10     |    422 |
| 2023-10-20 11:30:00 | 2024-11-10     |    387 |
+---------------------+----------------+--------+

Group Functions

max(col)

MariaDB [b16]> select max(sal) from emp;
+----------+
| max(sal) |
+----------+
|    80000 |
+----------+
1 row in set (0.001 sec)

min(col)

MariaDB [b16]> select min(sal) from emp;
+----------+
| min(sal) |
+----------+
|    20000 |
+----------+
1 row in set (0.001 sec)

sum(col)

MariaDB [b16]> select sum(sal) from emp;
+----------+
| sum(sal) |
+----------+
|   505000 |
+----------+
1 row in set (0.001 sec)

avg(sal)

MariaDB [b16]> select avg(sal) from emp;
+------------+
| avg(sal)   |
+------------+
| 45909.0909 |
+------------+
1 row in set (0.001 sec)

count(col)

  • count(col) -> Does not count Null columns
  • count(1) -> Counts all records including Null
MariaDB [b16]> select count(sal) from emp;
+------------+
| count(sal) |
+------------+
|         11 |
+------------+

distinct

MariaDB [b16]> select * from emp;
+------+----------+------------+------------+-------+------+--------------------+
| eid  | ename    | city       | doj        | sal   | did  | email              |
+------+----------+------------+------------+-------+------+--------------------+
|    1 | Vivek    | Pune       | 1999-01-01 | 20000 | NULL | vivek@gmail.com    |
|    2 | Abhishek | Mumbai     | 2000-01-01 | 30000 | NULL | abhishek@gmail.com |
|    3 | Shivam   | Delhi      | 1996-05-05 | 40000 | NULL | shivam@gmail.com   |
|    4 | Neha     | Kashmir    | 1999-05-01 | 50000 | NULL | neha@gmail.com     |
|    5 | Akshay   | Nagpur     | 1994-06-03 | 80000 | NULL | akshay@gmail.com   |
|    6 | Omkar    | Savedi     | 2000-07-03 | 20000 | NULL | omkar@gmail.com    |
|    7 | Kavita   | Shirdi     | 1999-01-01 | 35000 | NULL | kavita@gmail.com   |
|    8 | Gaurav   | Ahmednagar | 2000-01-01 | 35000 |   10 | gaurav@gmail.com   |
|    9 | Pooja    | Pune       | 1998-01-01 | 65000 |   20 | pooja@gmail.com    |
|   10 | Komal    | Bengaluru  | 1998-01-01 | 65000 |   10 | komal@gmail.com    |
|   11 | Xin      | China      | 1998-01-01 | 65000 |   10 | xin@gmail.com      |
|    1 | Vivek    | Pune       | 1999-01-01 | 20000 | NULL | vivek@gmail.com    |
|    2 | Abhishek | Mumbai     | 2000-01-01 | 30000 | NULL | abhishek@gmail.com |
|    3 | Shivam   | Delhi      | 1996-05-05 | 40000 | NULL | shivam@gmail.com   |
|    4 | Neha     | Kashmir    | 1999-05-01 | 50000 | NULL | neha@gmail.com     |
|    5 | Akshay   | Nagpur     | 1994-06-03 | 80000 | NULL | akshay@gmail.com   |
|    6 | Omkar    | Savedi     | 2000-07-03 | 20000 | NULL | omkar@gmail.com    |
|    7 | Kavita   | Shirdi     | 1999-01-01 | 35000 | NULL | kavita@gmail.com   |
|    8 | Gaurav   | Ahmednagar | 2000-01-01 | 35000 |   10 | gaurav@gmail.com   |
|    9 | Pooja    | Pune       | 1998-01-01 | 65000 |   20 | pooja@gmail.com    |
|   10 | Komal    | Bengaluru  | 1998-01-01 | 65000 |   10 | komal@gmail.com    |
|   11 | Xin      | China      | 1998-01-01 | 65000 |   10 | xin@gmail.com      |
+------+----------+------------+------------+-------+------+--------------------+
22 rows in set (0.001 sec)

MariaDB [b16]> select distinct * from emp;
+------+----------+------------+------------+-------+------+--------------------+
| eid  | ename    | city       | doj        | sal   | did  | email              |
+------+----------+------------+------------+-------+------+--------------------+
|    1 | Vivek    | Pune       | 1999-01-01 | 20000 | NULL | vivek@gmail.com    |
|    2 | Abhishek | Mumbai     | 2000-01-01 | 30000 | NULL | abhishek@gmail.com |
|    3 | Shivam   | Delhi      | 1996-05-05 | 40000 | NULL | shivam@gmail.com   |
|    4 | Neha     | Kashmir    | 1999-05-01 | 50000 | NULL | neha@gmail.com     |
|    5 | Akshay   | Nagpur     | 1994-06-03 | 80000 | NULL | akshay@gmail.com   |
|    6 | Omkar    | Savedi     | 2000-07-03 | 20000 | NULL | omkar@gmail.com    |
|    7 | Kavita   | Shirdi     | 1999-01-01 | 35000 | NULL | kavita@gmail.com   |
|    8 | Gaurav   | Ahmednagar | 2000-01-01 | 35000 |   10 | gaurav@gmail.com   |
|    9 | Pooja    | Pune       | 1998-01-01 | 65000 |   20 | pooja@gmail.com    |
|   10 | Komal    | Bengaluru  | 1998-01-01 | 65000 |   10 | komal@gmail.com    |
|   11 | Xin      | China      | 1998-01-01 | 65000 |   10 | xin@gmail.com      |
+------+----------+------------+------------+-------+------+--------------------+
11 rows in set (0.001 sec)

MariaDB [b16]> select distinct sal from emp;
+-------+
| sal   |
+-------+
| 20000 |
| 30000 |
| 40000 |
| 50000 |
| 80000 |
| 35000 |
| 65000 |
+-------+
7 rows in set (0.001 sec)

16 Nov

Group By

Used to perform group functions on group of records based on given column

MariaDB [b16]> select did, avg(sal) from emp group by did;
+------+------------+
| did  | avg(sal)   |
+------+------------+
| NULL | 39285.7143 |
|   10 | 55000.0000 |
|   20 | 65000.0000 |
|   30 | 10000.0000 |
+------+------------+
4 rows in set (0.001 sec)

Having

Use to filter output of Group By

MariaDB [b16]> select did, sum(sal)from emp group by did having sum(sal) > 50000;
+------+----------+
| did  | sum(sal) |
+------+----------+
|   10 |   330000 |
|   20 |   130000 |
|   38 |   115000 |
|   92 |    80000 |
|   97 |    70000 |
+------+----------+
5 rows in set (0.001 sec)

Set Operators

  • UNION -> Combines both returns unique records
  • UNION ALL -> Combines both tables including duplicate records
  • INTERSECT -> Returns matching unique records from both
  • MINUS/EXCEPT -> Non Matching records from first table

MariaDB [b16]> select * from pune;
+------+--------+
| id   | ename  |
+------+--------+
|    1 | akash  |
|    2 | ganesh |
+------+--------+
2 rows in set (0.000 sec)

MariaDB [b16]> select * from mumbai;
+------+---------+
| id   | ename   |
+------+---------+
|    1 | sandesh |
|    1 | akash   |
+------+---------+
2 rows in set (0.000 sec)

Union

MariaDB [b16]> select * from pune UNION select * from mumbai;
+------+---------+
| id   | ename   |
+------+---------+
|    1 | akash   |
|    2 | ganesh  |
|    1 | sandesh |
+------+---------+
3 rows in set (0.000 sec)

Union All

MariaDB [b16]> select * from pune UNION ALL select * from mumbai;
+------+---------+
| id   | ename   |
+------+---------+
|    1 | akash   |
|    2 | ganesh  |
|    1 | sandesh |
|    1 | akash   |
+------+---------+
4 rows in set (0.000 sec)

Intersect

MariaDB [b16]> select * from pune INTERSECT select * from mumbai;
+------+-------+
| id   | ename |
+------+-------+
|    1 | akash |
+------+-------+
1 row in set (0.000 sec)

EXCEPT / MINUS

MariaDB [b16]> select * from pune EXCEPT select * from mumbai;
+------+--------+
| id   | ename  |
+------+--------+
|    2 | ganesh |
+------+--------+
1 row in set (0.000 sec)

MariaDB [b16]> select * from mumbai EXCEPT select * from pune;
+------+---------+
| id   | ename   |
+------+---------+
|    1 | sandesh |
+------+---------+
1 row in set (0.000 sec)

17 Nov

Sub Queries

MariaDB [b16]> select * from emp where sal = (select max(sal)from emp);
+------+--------+--------+------------+-------+------+------------------+
| eid  | ename  | city   | doj        | sal   | did  | email            |
+------+--------+--------+------------+-------+------+------------------+
|    5 | Akshay | Nagpur | 1994-06-03 | 80000 |   92 | akshay@gmail.com |
|    5 | Akshay | Nagpur | 1994-06-03 | 80000 |   38 | akshay@gmail.com |
+------+--------+--------+------------+-------+------+------------------+
2 rows in set (0.007 sec)

MariaDB [b16]> select * from (select *, sal * 12 as 'AnnualSalary'  from emp)A where AnnualSalary >= 300000;
+------+----------+------------+------------+-------+------+--------------------+--------------+
| eid  | ename    | city       | doj        | sal   | did  | email              | AnnualSalary |
+------+----------+------------+------------+-------+------+--------------------+--------------+
|    2 | Abhishek | Mumbai     | 2000-01-01 | 30000 |   39 | abhishek@gmail.com |       360000 |
|    3 | Shivam   | Delhi      | 1996-05-05 | 40000 |   46 | shivam@gmail.com   |       480000 |
|    4 | Neha     | Kashmir    | 1999-05-01 | 50000 |   11 | neha@gmail.com     |       600000 |
|    5 | Akshay   | Nagpur     | 1994-06-03 | 80000 |   92 | akshay@gmail.com   |       960000 |
|    7 | Kavita   | Shirdi     | 1999-01-01 | 35000 |   71 | kavita@gmail.com   |       420000 |
|    8 | Gaurav   | Ahmednagar | 2000-01-01 | 35000 |   10 | gaurav@gmail.com   |       420000 |
|    9 | Pooja    | Pune       | 1998-01-01 | 65000 |   20 | pooja@gmail.com    |       780000 |
|   10 | Komal    | Bengaluru  | 1998-01-01 | 65000 |   10 | komal@gmail.com    |       780000 |
|   11 | Xin      | China      | 1998-01-01 | 65000 |   10 | xin@gmail.com      |       780000 |
|    2 | Abhishek | Mumbai     | 2000-01-01 | 30000 |   77 | abhishek@gmail.com |       360000 |
|    3 | Shivam   | Delhi      | 1996-05-05 | 40000 |   86 | shivam@gmail.com   |       480000 |
|    4 | Neha     | Kashmir    | 1999-05-01 | 50000 |   97 | neha@gmail.com     |       600000 |
|    5 | Akshay   | Nagpur     | 1994-06-03 | 80000 |   38 | akshay@gmail.com   |       960000 |
|    7 | Kavita   | Shirdi     | 1999-01-01 | 35000 |   38 | kavita@gmail.com   |       420000 |
|    8 | Gaurav   | Ahmednagar | 2000-01-01 | 35000 |   10 | gaurav@gmail.com   |       420000 |
|    9 | Pooja    | Pune       | 1998-01-01 | 65000 |   20 | pooja@gmail.com    |       780000 |
|   10 | Komal    | Bengaluru  | 1998-01-01 | 65000 |   10 | komal@gmail.com    |       780000 |
|   11 | Xin      | China      | 1998-01-01 | 65000 |   10 | xin@gmail.com      |       780000 |
+------+----------+------------+------------+-------+------+--------------------

MariaDB [b16]> select * from emp where did in (select did from dept);
+------+-----------+------------+------------+-------+------+-------------------+
| eid  | ename     | city       | doj        | sal   | did  | email             |
+------+-----------+------------+------------+-------+------+-------------------+
|    8 | Gaurav    | Ahmednagar | 2000-01-01 | 35000 |   10 | gaurav@gmail.com  |
|   10 | Komal     | Bengaluru  | 1998-01-01 | 65000 |   10 | komal@gmail.com   |
|   11 | Xin       | China      | 1998-01-01 | 65000 |   10 | xin@gmail.com     |
|    8 | Gaurav    | Ahmednagar | 2000-01-01 | 35000 |   10 | gaurav@gmail.com  |
|   10 | Komal     | Bengaluru  | 1998-01-01 | 65000 |   10 | komal@gmail.com   |
|   11 | Xin       | China      | 1998-01-01 | 65000 |   10 | xin@gmail.com     |
|    9 | Pooja     | Pune       | 1998-01-01 | 65000 |   20 | pooja@gmail.com   |
|    9 | Pooja     | Pune       | 1998-01-01 | 65000 |   20 | pooja@gmail.com   |
|   12 | Mr. Beast | Texas      | 2024-11-16 | 10000 |   30 | mrbeast@gmail.com |
+------+-----------+------------+------------+-------+------+-------------------+
9 rows in set (0.001 sec)

MariaDB [b16]> select temp_cust.*, temp_orders.order_date from (select * from customer where state='TX') temp_cust inner join (select * from orders where order_date between '2023-01-01' and '2023-12-31') temp_orders on temp_cust.cid = temp_orders.cid;
+------+-------------------+-------------+-------+------------+-------------------------------+---------------------+
| cid  | cname             | city        | state | mobile     | email                         | order_date          |
+------+-------------------+-------------+-------+------------+-------------------------------+---------------------+
| 107  | Robert Thompson   | San Antonio | TX    | 4444444444 | robert.thompson@example.com   | 2023-04-07 15:10:00 |
| 109  | William Hernandez | Dallas      | TX    | 7777777777 | william.hernandez@example.com | 2023-04-09 14:40:15 |
+------+-------------------+-------------+-------+------------+-------------------------------+---------------------+
2 rows in set (0.001 sec)

CTE (Common Table Expression)

MariaDB [b16]> with temp_cust AS (select * from customer where state='TX'), temp_orders AS (select * from orders where order_date between '2023-01-01' and '2023-12-31')  select temp_cust.*, temp_orders.order_date from temp_cust   inner join temp_orders  on temp_cust.cid = temp_orders.cid;
+------+-------------------+-------------+-------+------------+-------------------------------+---------------------+
| cid  | cname             | city        | state | mobile     | email                         | order_date          |
+------+-------------------+-------------+-------+------------+-------------------------------+---------------------+
| 107  | Robert Thompson   | San Antonio | TX    | 4444444444 | robert.thompson@example.com   | 2023-04-07 15:10:00 |
| 109  | William Hernandez | Dallas      | TX    | 7777777777 | william.hernandez@example.com | 2023-04-09 14:40:15 |
+------+-------------------+-------------+-------+------------+-------------------------------+---------------------+
2 rows in set (0.001 sec)

Window Functions

  • row_number -> Assigns row number sequentially
  • rank -> Returns same rank if value is same but skips ranks
  • dense rank -> Returns same rank if value is same but does not skips ranks
  • lead -> Next record
  • lag -> Previous record

row_number

MariaDB [b16]> select eid, sal, row_number() over(order by sal ) as 'Row Number' from emp;
+------+-------+------------+
| eid  | sal   | Row Number |
+------+-------+------------+
|   12 | 10000 |          1 |
|    6 | 20000 |          2 |
|    6 | 20000 |          3 |
|    1 | 20000 |          4 |
|    1 | 20000 |          5 |
|    2 | 30000 |          6 |
|    2 | 30000 |          7 |
|    7 | 35000 |          8 |
|    7 | 35000 |          9 |
|    8 | 35000 |         10 |
|    8 | 35000 |         11 |
|    3 | 40000 |         12 |
|    3 | 40000 |         13 |
|    4 | 50000 |         14 |
|    4 | 50000 |         15 |
|    9 | 65000 |         16 |
|    9 | 65000 |         17 |
|   10 | 65000 |         18 |
|   10 | 65000 |         19 |
|   11 | 65000 |         20 |
|   11 | 65000 |         21 |
|    5 | 80000 |         22 |
|    5 | 80000 |         23 |
+------+-------+------------+
23 rows in set (0.001 sec)

MariaDB [b16]> select eid, sal, row_number() over(order by sal desc) as 'Row Number' from emp;
+------+-------+------------+
| eid  | sal   | Row Number |
+------+-------+------------+
|    5 | 80000 |          1 |
|    5 | 80000 |          2 |
|    9 | 65000 |          3 |
|    9 | 65000 |          4 |
|   10 | 65000 |          5 |
|   10 | 65000 |          6 |
|   11 | 65000 |          7 |
|   11 | 65000 |          8 |
|    4 | 50000 |          9 |
|    4 | 50000 |         10 |
|    3 | 40000 |         11 |
|    3 | 40000 |         12 |
|    7 | 35000 |         13 |
|    7 | 35000 |         14 |
|    8 | 35000 |         15 |
|    8 | 35000 |         16 |
|    2 | 30000 |         17 |
|    2 | 30000 |         18 |
|    6 | 20000 |         19 |
|    6 | 20000 |         20 |
|    1 | 20000 |         21 |
|    1 | 20000 |         22 |
|   12 | 10000 |         23 |
+------+-------+------------+
23 rows in set (0.001 sec)

rank

MariaDB [b16]> select eid, sal, rank() over(order by sal) as 'Rank' from emp;
+------+-------+------------+
| eid  | sal   | Rank |
+------+-------+------------+
|   12 | 10000 |          1 |
|    1 | 20000 |          2 |
|    1 | 20000 |          2 |
|    6 | 20000 |          2 |
|    6 | 20000 |          2 |
|    2 | 30000 |          6 |
|    2 | 30000 |          6 |
|    8 | 35000 |          8 |
|    8 | 35000 |          8 |
|    7 | 35000 |          8 |
|    7 | 35000 |          8 |
|    3 | 40000 |         12 |
|    3 | 40000 |         12 |
|    4 | 50000 |         14 |
|    4 | 50000 |         14 |
|    9 | 65000 |         16 |
|    9 | 65000 |         16 |
|   10 | 65000 |         16 |
|   10 | 65000 |         16 |
|   11 | 65000 |         16 |
|   11 | 65000 |         16 |
|    5 | 80000 |         22 |
|    5 | 80000 |         22 |
+------+-------+------------+
23 rows in set (0.001 sec)

MariaDB [b16]> select eid, sal, rank() over(order by sal desc) as 'Rank' from emp;
+------+-------+------------+
| eid  | sal   | Rank |
+------+-------+------------+
|    5 | 80000 |          1 |
|    5 | 80000 |          1 |
|    9 | 65000 |          3 |
|    9 | 65000 |          3 |
|   10 | 65000 |          3 |
|   10 | 65000 |          3 |
|   11 | 65000 |          3 |
|   11 | 65000 |          3 |
|    4 | 50000 |          9 |
|    4 | 50000 |          9 |
|    3 | 40000 |         11 |
|    3 | 40000 |         11 |
|    7 | 35000 |         13 |
|    7 | 35000 |         13 |
|    8 | 35000 |         13 |
|    8 | 35000 |         13 |
|    2 | 30000 |         17 |
|    2 | 30000 |         17 |
|    6 | 20000 |         19 |
|    6 | 20000 |         19 |
|    1 | 20000 |         19 |
|    1 | 20000 |         19 |
|   12 | 10000 |         23 |
+------+-------+------------+
23 rows in set (0.001 sec)

Dense Rank

MariaDB [b16]> select eid, sal, dense_rank() over(order by sal) as 'Dense Rank' from emp;
+------+-------+------------+
| eid  | sal   | Dense Rank |
+------+-------+------------+
|   12 | 10000 |          1 |
|    6 | 20000 |          2 |
|    6 | 20000 |          2 |
|    1 | 20000 |          2 |
|    1 | 20000 |          2 |
|    2 | 30000 |          3 |
|    2 | 30000 |          3 |
|    7 | 35000 |          4 |
|    7 | 35000 |          4 |
|    8 | 35000 |          4 |
|    8 | 35000 |          4 |
|    3 | 40000 |          5 |
|    3 | 40000 |          5 |
|    4 | 50000 |          6 |
|    4 | 50000 |          6 |
|    9 | 65000 |          7 |
|    9 | 65000 |          7 |
|   10 | 65000 |          7 |
|   10 | 65000 |          7 |
|   11 | 65000 |          7 |
|   11 | 65000 |          7 |
|    5 | 80000 |          8 |
|    5 | 80000 |          8 |
+------+-------+------------+
23 rows in set (0.001 sec)

MariaDB [b16]> select eid, sal, dense_rank() over(order by sal desc) as 'Dense Rank' from emp;
+------+-------+------------+
| eid  | sal   | Dense Rank |
+------+-------+------------+
|    5 | 80000 |          1 |
|    5 | 80000 |          1 |
|    9 | 65000 |          2 |
|    9 | 65000 |          2 |
|   10 | 65000 |          2 |
|   10 | 65000 |          2 |
|   11 | 65000 |          2 |
|   11 | 65000 |          2 |
|    4 | 50000 |          3 |
|    4 | 50000 |          3 |
|    3 | 40000 |          4 |
|    3 | 40000 |          4 |
|    7 | 35000 |          5 |
|    7 | 35000 |          5 |
|    8 | 35000 |          5 |
|    8 | 35000 |          5 |
|    2 | 30000 |          6 |
|    2 | 30000 |          6 |
|    6 | 20000 |          7 |
|    6 | 20000 |          7 |
|    1 | 20000 |          7 |
|    1 | 20000 |          7 |
|   12 | 10000 |          8 |
+------+-------+------------+
23 rows in set (0.001 sec)

Lag(col, n)

MariaDB [b16]> select eid, ename, sal, did, lag(sal,3) over(order by eid asc) as total_sal from emp;
+------+-----------+-------+------+-----------+
| eid  | ename     | sal   | did  | total_sal |
+------+-----------+-------+------+-----------+
|    1 | Vivek     | 20000 |   97 |      NULL |
|    1 | Vivek     | 20000 |   77 |      NULL |
|    2 | Abhishek  | 30000 |   77 |      NULL |
|    2 | Abhishek  | 30000 |   39 |     20000 |
|    3 | Shivam    | 40000 |   46 |     20000 |
|    3 | Shivam    | 40000 |   86 |     30000 |
|    4 | Neha      | 50000 |   11 |     30000 |
|    4 | Neha      | 50000 |   97 |     40000 |
|    5 | Akshay    | 80000 |   92 |     40000 |
|    5 | Akshay    | 80000 |   38 |     50000 |
|    6 | Omkar     | 20000 |   68 |     50000 |
|    6 | Omkar     | 20000 |   53 |     80000 |
|    7 | Kavita    | 35000 |   38 |     80000 |
|    7 | Kavita    | 35000 |   71 |     20000 |
|    8 | Gaurav    | 35000 |   10 |     20000 |
|    8 | Gaurav    | 35000 |   10 |     35000 |
|    9 | Pooja     | 65000 |   20 |     35000 |
|    9 | Pooja     | 65000 |   20 |     35000 |
|   10 | Komal     | 65000 |   10 |     35000 |
|   10 | Komal     | 65000 |   10 |     65000 |
|   11 | Xin       | 65000 |   10 |     65000 |
|   11 | Xin       | 65000 |   10 |     65000 |
|   12 | Mr. Beast | 10000 |   30 |     65000 |
+------+-----------+-------+------+-----------+
23 rows in set (0.001 sec)

Lead(col,n)

MariaDB [b16]> select eid, ename, sal, did, lead(sal,3) over(order by eid asc) as total_sal from emp;
+------+-----------+-------+------+-----------+
| eid  | ename     | sal   | did  | total_sal |
+------+-----------+-------+------+-----------+
|    1 | Vivek     | 20000 |   97 |     30000 |
|    1 | Vivek     | 20000 |   77 |     40000 |
|    2 | Abhishek  | 30000 |   77 |     40000 |
|    2 | Abhishek  | 30000 |   39 |     50000 |
|    3 | Shivam    | 40000 |   86 |     50000 |
|    3 | Shivam    | 40000 |   46 |     80000 |
|    4 | Neha      | 50000 |   97 |     80000 |
|    4 | Neha      | 50000 |   11 |     20000 |
|    5 | Akshay    | 80000 |   92 |     20000 |
|    5 | Akshay    | 80000 |   38 |     35000 |
|    6 | Omkar     | 20000 |   53 |     35000 |
|    6 | Omkar     | 20000 |   68 |     35000 |
|    7 | Kavita    | 35000 |   71 |     35000 |
|    7 | Kavita    | 35000 |   38 |     65000 |
|    8 | Gaurav    | 35000 |   10 |     65000 |
|    8 | Gaurav    | 35000 |   10 |     65000 |
|    9 | Pooja     | 65000 |   20 |     65000 |
|    9 | Pooja     | 65000 |   20 |     65000 |
|   10 | Komal     | 65000 |   10 |     65000 |
|   10 | Komal     | 65000 |   10 |     10000 |
|   11 | Xin       | 65000 |   10 |      NULL |
|   11 | Xin       | 65000 |   10 |      NULL |
|   12 | Mr. Beast | 10000 |   30 |      NULL |
+------+-----------+-------+------+-----------+
23 rows in set (0.001 sec)

23 Nov

View - virtual table

  • create view view_name as select_query;
  • replace ->
  • Types:
    • Simple -> Uses simple statements like 'where', supports CRUD
    • Complex -> Uses joins, group by, window functions, Set Operators
MariaDB [b16]> create view ac_mumbai as select * from account where city='Mumbai'; //Simple View


MariaDB [b16]> select * from ac_pune;
+------+--------------+------+------------+-------+
| id   | name         | city | mob        | bal   |
+------+--------------+------+------------+-------+
|    7 | Anjali Mehta | Pune | 9234567890 | 17000 |
+------+--------------+------+------------+-------+

MariaDB [b16]> drop view ac_mumbai;
Query OK, 0 rows affected (0.004 sec)

Indexing

create index idx_name on table_name(col_name);
  • Clustered -> Arranges records in order
  • Non Clustered -> Maintains a reference table
  • Show indexes ->
    • show index from table_name;

Duplicate table with data

create table emp_bak as select * from emp;

Duplicate table structure only

create table emp_test as select * from emp where 1 = 0;

Insert from another table

insert into emp_test select * from emp where eid < 5;

Run .sql files

source .sql_file_ocation

Misc

  • if not exists -> only if the target does not already exist
  • if exists -> only if the target exists

Normalization & DeNormalization

process of organizing data into multiple related tables to eliminate redundancy and dependency.

Goals

  • Minimize redundancy.

  • Avoid data anomalies (insertion, update, and deletion).

  • 1NF (First Normal Form)

    • Ensures that each column contains atomic values (no repeating groups or arrays).
  • 2NF (Second Normal Form):

    • Satisfies 1NF and removes partial dependencies (dependencies on part of a composite primary key).
  • 3NF (Third Normal Form):

    • Satisfies 2NF and removes transitive dependencies (non-key columns depending on other non-key columns).
  • BCNF (Boyce-Codd Normal Form):

    • A stricter version of 3NF where every determinant is a candidate key.